林芝ECM环氧砂浆性能环氧砂浆江西赛恒实业有限公司 环氧砂浆 环氧胶泥 2.1 乳化法
2.钢板粘贴深度对抗剪承载力的影响当用宽钢板带粘贴加固时,钢板粘贴深度与加固梁腹板高度的比值是加固梁抗剪承载力的一个重要影响因素。其比值由于钢筋锈蚀之后钢筋截面面积会减小,构件截面尺寸会由于混凝土保护层的脱落产生相应的变化,钢筋各项力学性能产生了退化,以及疏松的锈层会导致钢筋与混凝土之间的粘结性能退化。板的计算弯矩M㈦为钢筋锈蚀后的计算结果,综合考虑了钢筋的锈蚀带来的影响,可以看出计算结果与试验值误差减小,但计算结果仍大于试验结果,说明锈蚀导致的钢筋面积的减小、钢筋力学性能的退化、板宽截面的损失所带来的钢筋混凝土构件承载力损失占有大部分。仍有一部分承载力损失是由于钢筋与混凝土之间的粘结滑移损失和钢筋保护层脱落影响了钢筋和混凝土的整体性所导致的。越大,钢板的抗剪切贡献越大。比值较小时,钢板对抗弯承载力的贡献多于对抗剪承载力的贡献。但是,试验研究表明,当该比值超过O.75时,钢板的贡献就不会有明显的变化。1.1 乳化剂乳化法
乳化剂是表面活性剂的一种, 在结构上同时含有亲水以及亲油组分。它的HLB 值是影响其乳化性能及其乳化效果的决定性因素。因此,想要得到稳定的乳液,必须选择具有合适HLB 值的乳化剂。对于EP 而言,可选择的乳化剂有很多种,常见的大体积混凝土结构通常是不配钢筋或钢筋数量很少,如果出现了拉应力,就要依靠混凝土本身来承受。在大体积混凝土结构设计中通常要求不出现拉应力或只出现很小的拉应力,对于自重、水压等外荷载,要做到这点一般不困难。但在施工和运行期间,在大体积混凝土结构中往往会由于温度变化而产生很大的拉应力。要将这种出于温度变化而引起的拉应力限制在允许范围内是颇不容易的。正是出于这个原因,在大体积混凝土结构中往往会出现这种所谓的“温度裂缝”。主要有: 聚氧乙稀烷基酚缩合物类, 如聚氧乙稀烷基酚醚;聚而锈蚀产物又会因体积膨胀增加裂缝宽度,裂缝的扩展又促使钢筋的锈蚀,如此周而复始循环,锈蚀由裂缝处向周边扩散,就导致了裂缝宽度和钢筋锈蚀率非线性的变化。钢锈蚀形态调查结果和这一过程相符。通过电化学试验方法研究锈蚀率与裂缝的关系也得出了相似的关系。但由于试验条件作者认为锈蚀产物会包裹住钢筋导致钢筋氧化反应停止,裂缝最终宽度为2.5mm,这和本次试验结果不符。本次试验中观测到的非角区钢筋锈蚀裂缝最大宽度为3.0IIlIn。所以上式公式只适用于裂缝宽度小于3fnm的情况下。氧乙烯脂肪醇缩合物类,如脂肪醇环氧乙烷缩合物;聚氧乙烯蓖麻油缩合物,如蓖麻油环氧乙烷缩合物等。当EP 和水混合在一起时,由于极性的巨大差异,两者会自发地分成两相。在加入乳化剂之后,其上的亲水基团溶于水,憎水基团溶于树脂,经强烈的搅拌剪切作用,EP 会以微粒的形式存在于水相之中,从而形成稳定的EP 乳液[4]。
2.1.2 自乳化法
自乳化法也称为化学改性法, 它指的是在EP的大分子主链上通过化学反应的手段(嵌段或者是接枝反应)引入各种强的亲水基团,使其成为既亲水又亲油的两亲性的聚合物, 从而具有水溶性或者是自乳化功能。常见的亲水改性剂是含有羟基、羧基、氨基、磺酸基和酰胺基化合物。水性化改性的方法主要有两大类: 一类是把EP 改性为含富酸基团的树脂(环氧酯),再用碱中和成盐,使之水性化;另一类是把EP 改性为含富碱基团的树脂(环氧酯),再用压浆存在的缺陷极可能导致预应力钢丝因腐蚀而性能降低,影响结构使用。上世纪70年代,英国一度因为孔道压浆的问题而作出了暂停使用有粘结后张法预应力混凝土结构的决定盟。本次利用某高速公路拓宽改建的契机,对一座主跨为45 m的某后张法预应力混凝土连续箱梁桥拆除现场中的预应力孔道压浆情况进行调查,并采集了一批预应力钢丝试样。在对该批试件进行一系列试验后,得到其极限抗拉强度、屈强比、弹性模量等重要力学指标。初步评定其性能,分析其变化情况,以供评定和分析类似结构的耐久性和极限承载能力时作为参考。酸中和成盐,使之水性化。所以又称为成盐法[5]。自乳化法得到的EP 的粒径为纳米级, 因而具有更好的应用价值。改性后的EP 可以与水形成水溶液,也可以作为乳化剂组分与未改性的EP 制成水乳液。水性化改性的EP 中可以保留也可以不保留环氧基,其固化可以依靠环氧基与固化剂交联固化,也可以靠引进的羟基、双键和羧基等官能团与相应的引发剂或固化剂交联固化, 还可以不加交联剂自行成膜。
植筋胶
林芝ECM环氧砂浆性能