《混凝土结构后锚固技术规程》 结构胶
4.1.3膨胀型锚栓和扩孔型锚栓不得用于受拉、边缘受剪(C<10hef)、拉剪复合受力的结构构件及生命线工程 非结构构件的后锚固连接。(生命线工程—与人们生活密切相关,且地震破坏会导至城市局部或全部瘫痪、引发次生灾害的工程,如供水、供电、交通 、电讯、煤气等。)
结构胶 &nbs孔道系统:孔道连接器、进浆口、出浆口、出气孔(阀门)、阀连接、孔道排水、锚具过渡段以及与锚具连接的压浆保护罩应组成一个封闭的孔道系统,以防空气和水的进入。孔道材料应由耐腐蚀材料制成,在结构设计年限内,其性能不得退化。孔道系统应与锚具、钢束连接器及其它构件相一致。如孔道材料是非导体,孔道系统应与其一致并通过试验检验是否可导。孔道应具有足够的刚度,其定位间距及支撑应保证孔道的线形、位置及截面尺寸,并避免在混凝土灌注过程中孔道支撑处变形。p;化学植筋及螺杆由于长度不受限制,与现浇混凝土钢筋锚固相似,破坏形态易于控制,一般均可以控制为锚筋钢材破坏,故适用于静力及抗震设防烈度 ≤8度的结构构件及非结构构件的锚固连接。对于承受疲劳荷载的结构构件的锚固连接,由于实验数据不多,使用经验(特别是构造措施)缺乏,应慎
结构胶 粘结型锚栓,又称化学粘结栓,简称化学栓或粘结栓,是用特制的化学胶粘剂(锚固胶),将螺栓及内螺纹管等胶植筋工艺分为成孔、清孔、调胶、植筋等工序。钻孔时,严格按设计要求控制植筋孔深。植筋粘结剂采用西安科技大学研制的无机粘结剂,植筋钢筋采用建筑工程常用HRB335级钢筋。植筋完成后,经固化24h后便可进行拉拔试验。结固定于混凝土基材钻孔中,通过粘 结剂与螺杆及粘结剂与混凝土孔壁间的粘结与锁缝(interlock)作用,实现对被连接件锚固的一种组件。
结构胶如果在大面积的钢筋表面上具有高浓度氯化物,则氯化物所引起的腐蚀可能是均匀腐蚀,但是在不均匀的混凝土中,常见的是局部腐蚀。a一对钢筋表面钝化膜的破坏发生在局部,使这些部分露出了铁基体,与尚好的钝化膜区域形成单位差;铁基体作为阳极而受腐蚀,大面积钝化膜区域作为作为阴极。腐蚀电池作用的结果是,在钢筋表面产生蚀坑,由于大阴极对应小阳极,蚀坑发展速度十分迅速。 目前,市面定型粘结型锚栓一般都较为粗短 ,锚深较浅,对基材裂缝适应能力较差,承载力很低,不适用于受拉、边缘受剪、拉剪复合受力之结构构件及生命线工程非结构构件的后锚固连接;除 专用在开裂混凝土的粘结型锚栓外,一般粘结型锚栓也不宜用于开裂混凝土基材受拉、边缘受剪、拉剪复合受力之结构构件的后锚固连接。
结构胶 化学植筋,简称植筋,是我国工程界广泛应用的一种后锚固连接技术,系以化学胶粘剂—锚固胶,将带肋钢筋及螺杆胶结固定于混凝土基材钻孔中,通 过粘结与锁健作用,实现对被连接件锚固的一种组件。
化学植筋锚固基理与粘结型锚栓相同,但化学植筋及螺杆由于长度不受限制,与现浇混凝土钢筋 锚固相似,破坏形态易于控制,一般均可以控制为锚筋钢材破坏,故适用根据腐蚀电化学理论,Stern和Geary于1957年推导出检测腐蚀速度的一个简单、快速、无损的技术——线性极化法。在研究混凝土中钢筋腐蚀速率的电化学方法中,线性1980年在广西建成的第一座铁路预应力混凝土斜拉桥——红水河桥推动我国斜拉桥进入快速发展阶段;1995年建成的铜陵长江大桥(主跨432m,当时为世界最大的肋板式混凝土斜拉桥)标志着我国斜拉桥设计进入轻型化时代;2002年建成的荆州长江大桥(主跨500m)是世界上最大的肋板式混凝土斜拉桥;广东金马大桥(主桥283m+283m)是世界上最大的独塔混凝土斜拉桥。极化法是最简单的一种。仪器简便相对廉价,测量速度快,而且结果容易处理,适合现场使用。此法主要基于Stern—Geary公式,对被测钢筋外加一个恒定电位,保证扰动信号足够小使电压与电流之间满足线性关系。线性极化法能给出可靠的腐蚀速率值。但是难以确定受到外加信号的钢筋表面积,需要交流方法对其做IR补偿。于静力及抗震设防烈度≤8度的结构构件及非结构构件的锚固连接。对于承受 疲劳荷载的结构构件的锚固连接,由于实验数据不多,使用经验(特别是构造措施)缺乏,应慎重使用。 结构胶 植筋胶